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Abstract--The energy method is used to discuss the non-linear stability of convection in a horizontal 
porous layer subjected to an inclined temperature gradient. The compound matrix method is used to solve 
the associated eigenvalue problem. It is noted that linear instability is superceded by subcritical finite 

amplitude instability. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The problem of the stability of the steady convective 
flow, which is caused by the horizontal component of 
the temperature gradient in a shallow horizontal layer 
of the porous medium, has been studied by Weber [1] 
and Nield [2, 3]. Both of these authors use linear 
stability analyses. Weber's analysis is concerned with 
a small non-dimensional horizontally applied tem- 
perature gradient, fl ; he used a perturbation theory in 
terms of the powers of r ,  to solve for the critical 
Rayleigh number. Nield's [2] analysis removed the 
restriction of smai[l fl and used a low order Galerkin 
approximation to solve the eigenvalue problem. In 
his subsequent paper Nield [3] noted that his earlier 
treatment of the problem, based upon the low order 
Galerkin approximation was not satisfactory, par- 
ticularly when fl increased considerably. He [3] then 
used a higher order Galerkin approximation and 
found improved results. In particular, he noted that 
the values of the critical vertical Rayleigh numbers Rv, 
rather than increasing indefinitely with the increase of 
the horizontal Rayleigh number RH, now reached a 
maximum and then decreased to the value zero. Nield 
attributed this new result to predict that Hadley flow 
in a porous medium, when the circulation is 
sufficiently intense, becomes unstable even in the 
absence of an applied vertical gradient. 

The purpose or the present paper is to study the 
non-linear stability of the title problem via an energy 
method. We use a compound matrix method to solve 
the eigenvalue problem and the golden section search 
method for determining the maximum and the mini- 
mum routines. We carry out both the linear and non- 
linear stability calculations using this method. Our 
calculations for the linear stability analysis compare 
well with Nield's [3] results, except with some minor 
changes in the values when the horizontal Rayleigh's 
number takes on higher values. The non-linear stab- 

ility results are, however, new. We find that linear 
stability is superceded by subcritical finite amplitude 
instability. We also find that there exists a critical 
horizontal Rayleigh number (horizontal temperature 
gradient) at which the porous fluid layer is always 
unstable, irrespective of the vertical Rayleigh number. 

We remark that linear stability analysis yields cri- 
teria sufficient only for instability and says nothing 
definite about stability. Likewise, the energy analysis 
predicts only the sufficient conditions for stability and 
says nothing definite about instability. The two types 
of analysis, thus, complement each other to some 
degree, and when the linearized systems of governing 
equations happen to be self-adjoint their predictions 
coincide. In other situations the energy analysis shows 
the possibility of subcritical instability which should 
be analysed over and above the linear instability 
analysis. 

2. BASIC EQUATIONS 

The model to be studied is the same as considered 
by Weber [1] and Nield [2, 3] ; we follow the notation 
and scaling of Nield [3]. The porous medium occupies 
a layer of height H. The vertical temperature differ- 
ence across the boundaries is AT and flow in the 
porous medium is governed by Darcy's law. For the 
density variation, the Boussinesq approximation is 
assumed to be valid. Accordingly, following the non- 
dimensionalization scheme of Nield [3], the governing 
equations take the form 

V" v = 0 (1) 

v + V P  = Tk (2) 

OT 
~ -  + (v" V) T = V 2 T (3) 

where v, P, and T are non-dimensionalized seepage 
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NOMENCLATURE 

dimensionless overall horizontal wave t 
number u, v 
differential operator, d/dz 
gravitational acceleration 
layer height 
unit vectors in the x-, y- and z- 
directions, respectively 
permeability 
dimensionless wave number in y- 
direction 
dimensionless pressure/perturbed 
pressure ~m 
dimensionless steady state pressure fit 
horizontal Rayleigh number ~v 
vertical Rayleigh number 0 
dimensionless temperature x 
dimensionless steady-state /1 
temperature P0 

dimensionless time 
dimensionless perturbed velocity 
vector/velocity vector 

us dimensionless steady-state velocity 
vector 

x, y, z dimensionless Cartesian coordinates. 

Greek symbols 
thermal diffusivity 
horizontal temperature gradient 
coefficient of volume expansion 
perturbed dimensionless temperature 
thermal diffusivity 
dynamic viscosity 
density at the reference temperature. 

velocity, pressure and temperature, respectively, and 
k is the unit vector in the z-direction. For  rigid bound- 
aries, the nondimensional form of boundary con- 
ditions become 

w = 0 and T =  - ( + _ R v / 2 ) - - R H X  

at z =  +1/2 (4) 

where Rv and RH are vertical and horizontal Rayleigh 
numbers, respectively, and are defined as [3] 

Rv = pOgyTKH AT/#OCm RH = pogyrKH2 flr/IZCtm. 

(5) 

Here P0 is the density at the reference temperature, 
g is the gravitational acceleration, YT is the thermal 
expansion coefficient, K is the permeability of the 
medium, fit is the horizontal temperature gradient, # is 
the dynamic viscosity, and ~tm is the thermal diffusivity. 
The basic steady state solution (Us, T.ps)  of equations 
(1)-(3) satisfying the boundary condition (4) is [3] 

U s = RHZ V s = 0  W s = 0  

Ts = -- RHX -- g v z  + R 2 f ( z )  

Vps = T,k-u~ (6) 

where we imposed the requirement that there is no net 
horizontal mass flux ; 

f. 
u~dz = 0 v~dz = 0 

d -- 1/2 d -- 1/2 

and where 

(7) 

3. STABILITY ANALYSIS 

We now perturb the steady-state solution as fol- 
lows : 

V=Us+U T =  Ts+O P = P s + P .  (9) 

The perturbation equations then take the form 

v .  u = o (1o) 

n+Vp = Ok (11) 

c~O 
~- +(u-V)O = WO-us'VO-u'VTs (12) 

where us and Ts are given by equation (6). The cor- 
responding boundary conditions become 

w = 0  and 0 = 0  at z =  +1/2. (13) 

A quick look at the system of  equations (10)-(12) tells 
us that the linearized system is not symmetric (self- 
adjoint) and, hence, the energy method will give 
different results from the linear stability method. We 
define an energy functional as 

E(t) = ~ [[0112 (14) 

where ~ is a positive coupling parameter. On mul- 
tiplying equation (11) by u, equation (12) by 0 and 
integrating over V, we find (after using the boundary 
conditions and divergence theorem) 

l d  
2 dt 11°112 = -IlV0112 --<u.  VTs)0> (15) 

f ( z )  = ~4(z-4z3). (8) I]ufl 2 = (Ow). (16) 
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Here V denotes a typical periodicity cell, ( ' )  denotes 
the integration over V, and [l'[[ denotes the LE(V) 
norm. Equations (14)-(16) can be put  in the form [4], 

dE 
d--t- = J - ~ '  (17) 

where 

= - ¢ ( ( u .  VT30) + (Ow) (18)  

= ~IIV0112 + llnll 2. (19)  

We now define 

J 
m = max ~ ,  (20) 

where oug is the space of admissible solutions. On 
combining equatiorL (17) with equations (19)-(20) and 
by using Poincar6 inequality, we can infer, for 
0 < m < 1, that 

dE 
d---t ~< - 2 n 2 ( 1 - - m ) E .  (21) 

Inequality (21) clearly indicates that for 0 < m < 1, 
E(t) --* 0 at least exponentially as t ~ oo. Since E(t) in 
equation (14) doe,,; not  contain the term Ilull 2, the 
kinetic energy term for the velocity, it is worthwhile 
checking as to what happens to Ilull 2 as t --* oo. Use 
of the Cauchy-Schwartz inequality on equation (16) 
implies that 

Ilull 2 ~ II0ll 2. (22) 

Thus equations (14) and (22) clearly indicate that 
decay of E(t) ensures the decay of Ilull 2. 

4. NUMERICAL RESULTS AND DISCUSSION 

We now return ~Lo equation (20) and consider the 
maximum problem at the critical argument m = 1. 
The associated Euler-Lagrange equations become 

- ~V T s • u + w + 2~V 20 = 0 (23) 

~VTs0-  Ok + 2u = Vto (24) 

where to is a Lagra:age multiplier introduced since u is 
solenoidal. On taking curlcurl of equation (24) and 
then taking the third component  of resulting equation, 
we find 

620 
2 V : w - V ~ ( g , O ) + ~ R i a o - ~ z  = 0 (25) 

where V 2 = 02 /Ox z + 02 /Oy 2 and 

g~ = 1 + ¢ ( R v - R 2 f O  f l  = ~ ( 1 -  12z2). (26) 

Equations (23) and (24) can also be written as 

~Rnu +gl  w + 2~V: 0 = 0 (27) 

Oto 
-. ~RnO+ 2u = ~xx" (28) 

It has been shown by Nield [3] and also confirmed by 
Straughan and Walker [5], that the steady longi- 
tudinal mode is the most favourable mode of dis- 
turbances for this problem. We also checked it here 
and found it to agree with their prediction. From now 
on, we thus restrict ourselves to this situation only. 
We perform the standard normal  mode analysis and 
look for the solution of the above, in the form 

[u, w, 0, to] = [u(z), w(z), O(z), to(z)] exp lily]. 

On eliminating the different variables we derive the 
corresponding eigenvalue problem, which can, after 
some rearrangement of terms, be written as 

D2w = hlw+h:O (29) 

D20 = h3w+h40 (30) 

where D = d/dz, a 2 = 12. The variables h~ . . . .  ,h4, 
which are functions of z, are given as 

a 2 
hi = a  2, h 2 = - ~ - g l  

2 h3 = gl h4 = a 2 -  ~ R n .  (31) 
2 ¢ '  

The relevant boundary  conditions are 

w = 0 = 0  at z = _ 1 / 2 .  (32) 

We consider Rv as the eigenvalue with the remaining 
variables as parameters. The critical vertical Rayleigh 
number  is defined by 

R E = max min Rv(Rn,  a 2, ~). (33) 
a 2 

On letting x~ = w, x~ = Dw, x3 = O, x4 = DO ; the sys- 
tem of equations (29)-(30) can be written in the matrix 
form as 

= AX. (34) 

where X =(x~,x2,xs, x4) l and A is a suitable 
coefficient matrix. The boundary  conditions now take 
the form 

xl = x a  = 0 ,  at z = _ 1 / 2 .  (35) 

We next employ the compound matrix method and 
carry out the maximization and minimization routines 
by golden section search. Table 1 displays our com- 
puted results of  linear and non-linear critical vertical 
Rayleigh number. For  the purpose of comparison we 
have also included the Nield's [3] linear results 
obtained via the Galerkin approximation. The second 
and third columns represent Nield's results and these 
are denoted by RvN and aLN , respectively. The next 
two columns represent the linear stability results 
obtained by the compound matrix method. We note 
the results for Rv and aL, nearly coincide with those 
obtained by Nield, up to the value of RH = 80, but  
there is a general variation of these values for Rn 
greater than 90. In particular, we note that, when RH 
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Table 1. Critical vertical Rayleigh number vs horizontal Rayleigh number 

RH RVN aLN Rv aL RE aE 

0.0000 39.48 3.14 39.4784 3.14159 39.4784 3.14159 
10.000 42.01 3.14 42.0076 3.14185 40.7235 3.09208 
20.000 49.56 3.15 49.5486 3.14575 44.2151 2.95465 
30.000 62.28 3.16 61.9567 3.16340 49.3234 2.76244 
40.000 79.24 3.20 78.9664 3.21522 55.2825 2.55843 
50.000 100.9 3.28 100.117 3.34455 61.4103 2.37439 
60.000 126.4 3.51 124.473 3.67219 67.1673 2.22451 
70.000 154.0 4.22 149.186 4.67123 72.1108 2.11239 
80.000 161.9 7.78 164.371 6.53124 75.8263 2.03908 
90.000 143.5 7.73 160.999 7.73120 77.8499 2.00932 

100.00 123.3 7.67 143.586 8.46277 76.1711 6.57897 
110.00 101.4 7.61 115.387 9.24311 43.7370 7.69003 

119.91 - -  - -  76.1049 10.0414 0.00000 8.74504 
120.00 62.00 9.51 75.2456 9.99230 - -  - -  
132.50 0.000 9.64 7.71396 10.8611 - -  - -  
133.73 - -  0.00000 10.9433 - -  - -  
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Fig. 1. Plots of critical values of vertical Rayleigh number Rv against the horizontal Rayleigh number RH 
for various theories. 

is increased over 90, values of  RvN fall faster than 
those of  RL, and aL takes higher values than those of  
aLN. Table 1 also gives the critical RE and aE values 
obtained via the energy method.  A quick look clearly 
indicates that, overall, RE and aE values are smaller, 
compared to the linear case. This is not  surprising, 
since, as is pointed out earlier, the energy method  
gives the sufficient condit ion for stability and, as such, 
the values obtained by this method  are generally con- 
servative as compared  to the linear stability case. One 
significant different is found, in the aE values, which 
unlike the linear case, take an abrupt  jump when RH 
is very close to 90. Figure 1 displays the graph of  
the vertical Rayleigh number  vs horizontal  Rayleigh 

number  for the three cases. As it is clear from the 
graphs, there is the possibility of  a subcritical insta- 

bility, which needs to be further analysed by con- 
sidering finite amplitude analysis. 
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